分类 Pytorch 教程 下的文章


撰写于    浏览:44 次  分类: Pytorch 教程
图神经网络简介图神经网络(Graph Neural Network,GNN)是指使用神经网络来学习图结构数据,提取和发掘图结构数据中的特征和模式,满足聚类、分类、预测、分割、生成等图学习任务需求的算法总称。图神经网络(Graph Neural Network,GNN)是近年来出现的一种利用深度学习直接对图结构数据进行学习的框架,其优异的性能引起了学[...]

撰写于    浏览:50 次  分类: Pytorch 教程
在使用Pytorch经常会遇到以下的错误:RuntimeError: Given groups=1, weight of size [16, 7, 5, 5], expected input[1, 11, 64, 64] to have 7 channels, but got 11 channels instead这个错误通常出现在卷积操作中,卷积[...]

撰写于    浏览:567 次  分类: Pytorch 教程
Seq2Seq模型可以用于处理输入序列和输出序列长度不相同的问题。常用的场景有:机器翻译、语音识别和文字识别三个领域为例。1、机器翻译领域比如将“ABC”输入序列翻译成“WXYZ”输出序列。Seq2Seq模型可以处理输入序列和输出序列长度不同问题。2、语音识别在attention-based的Seq2Seq基础上,引入了混合attention机制,[...]

撰写于    浏览:410 次  分类: Pytorch 教程
什么是Seq2Seq?所谓Seq2Seq(Sequence to Sequence),就是一种能够根据给定的序列,通过特定的方法生成另一个序列的方法。它被提出于2014年,最早由两篇文章独立地阐述了它主要思想,分别是Google Brain团队的《Sequence to Sequence Learning with Neural Networks》[...]

撰写于    浏览:1113 次  分类: Pytorch 教程
《Attention Is All You Need》是一篇Google提出的将Attention思想发挥到极致的论文。这篇论文中提出一个全新的模型,叫 Transformer,抛弃了以往深度学习任务里面使用到的CNN和RNN,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。《Attention Is All Yo[...]

撰写于    浏览:430 次  分类: Pytorch 教程
Transformer模型简介《Attention Is All You Need》是一篇Google提出的将Attention思想发挥到极致的论文。这篇论文中提出一个全新的模型,叫 Transformer,抛弃了以往深度学习任务里面使用到的CNN和RNN,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。Trans[...]

飞燕网
人工智能,资源分享

    友情链接